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Abstract 
In this paper, we present a new technique called Trapezium 
Drawing to improve surface mesh quality while maintaining the 
essential surface characteristics. In contrast to previous methods 
we do not tend to preserve new mesh vertices on the original 
discrete surface. Instead our approach allows keeping new mesh 
close to the surface approximated by the initial mesh. All 
operations are performed directly on the surface. As a result our 
technique is robust and runs at interactive speeds. It can be 
applied to triangular and quadrilateral meshes iteratively. Various 
quantitative measures are presented to demonstrate the 
effectiveness of proposed technique. 
Keywords: Surface Mesh Quality, Surface Characteristics, 
Triangles, Quadrilaterals 
. 

1. INTRODUCTION 

Improvement of surface mesh quality is important problem for 
numerical simulations, solid mesh generation and computer 
graphics applications.  
There are two main ways for mesh optimization: modifications of 
mesh topology (remeshing) by inserting/deleting mesh nodes or 
edge flipping [1][2][3][4] and node movement methods 
commonly called mesh smoothing. Let us note that changing the 
mesh topology may cause some problems in simulations requiring 
solution transfer from the original mesh to the resultant one. 
Moreover many remeshing algorithms can be applied only to 
triangular meshes.   Therefore in this paper we focuses on node 
movement technique for surface mesh improvement. 
To improve mesh quality in the plane a number of smoothing 
techniques have been developed ranging from simple Laplacian 
smoothing (see, for instance, [5] and references therein) to more 
sophisticated algorithms. Among them there are physically based 
methods [6][7] where nodes are moved under the influence of 
some forces so that the shape of incident elements is improved. 
Instead of local mesh optimization by moving each node on the 
basis some geometric characteristics (as is done in Laplacian 
smoothing, angle-based [8] and physically based methods) the 
optimization-based techniques allow improving all original mesh. 
In these techniques so called cost function [9] is optimized. As 
such function aspect ratio [10] or distortion metrics [11] [12] can 
be used. 

It is necessary to note that the good shape of mesh elements is not 
only the criteria for mesh quality when surface meshes are 
considered. It is also essential to minimize changes in surface 
characteristics like normals and curvatures. As it has been pointed 
out in [13] preservation of such characteristics is important for 
preventing drastic changes in the volume enclosed by the surfaces 
and in forces like surface tension that depend on surface 
properties.  

1.1 Previous works 
Several techniques to improve surface mesh quality have been 
developed over the last decade. Most of them are based on an idea 
to constrain node movement to the underlying discrete surface. A 
simple way is to reposition each node in a locally derived tangent 
plane and project it back to the surface [14][15]. More robust 
algorithms use global parameterization of the original mesh, and 
then improvement in the parameter domain [16][17][18].  The 
main drawback of these methods is high computational cost since 
they involve the solution of a large set of equations. Moreover, 
global parameterization may distort the complicated 3D structure. 
The alternative to global parameterization has been proposed in 
[13]. The nodes of the mesh are moved in a series of local 
parametric spaces derived from individual mesh elements. 
Let us note, however, that all these methods allow keeping new 
nodes on the original mesh but not on the surface approximated 
by this mesh. As a simple example consider a sphere and a mesh 
with the nodes situated on this sphere. Applying algorithms 
described above we will obtain new nodes situated on the original 
mesh but not on the original sphere. Therefore, unlike initial mesh 
the new mesh will not be discrete approximation of the original 
sphere. Furthermore, several iterations will cause considerable 
shrinking initial surface.    

1.2 Contribution and overview  
We looked at the problem of surface mesh improvement from 
another point of view. We do not pose a problem to preserve new 
nodes on the original mesh that is on the discrete surface. Instead 
we propose method called Trapezium Drawing (TD) to keep 
resultant mesh very close to the surface approximated by the 
initial mesh. This method can be called explicit because all 
operations are performed directly on the surface. That is the 
reason why our technique is robust and fast. But for all that we do 
not sacrifice any quality in results. Moreover the method can be 
applied iteratively. Even after several passes there is no 
degenerating mesh quality and all main features of the surface are 
preserved.  
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Figure 1 demonstrates the main difference between our approach 
to the problem and previous ones.        
The rest of the paper is organized as follows. In Sections 2 and 3 
we give a detailed description of the TD algorithm for triangular 
and quadrilateral meshes respectively. Section 4 describes some 
quantitative measures to examine mesh quality and deviation of a 
resultant surface from the original one. Examples of applying TD 
algorithm to various meshes are presented in Section 5. We close 
by offering some concluding remarks in Section 6. 

     
            (a)                              (b)                             (c) 
Figure1: (a) Original pyramid; (b) Optimized pyramid with the 
apex vertex constrained to the original surface; (c) Pyramid 
optimized with TD algorithm. 
 

2. ALGORITHM FOR TRIANLGE MESHES 

Let us consider some node  of the original mesh and all 

nodes ,  associated with this node. For each 

node the new position of the node is obtained according to 
the following procedure.  
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At first, we find the node such as vectorsPp j ∈ ipp0  and 

jpp0 compose a maximal angle as shown in Figure 2. The new 

position  of the node with regard to will be a vertex of a 
trapezium such as a triangle consisting of the points s 
isosceles (Figure 3).  Let us emphasize two aspect of the 

algorithm. 
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 (see Figure 4). After all  have been found the new position of 

the node is obtained by averaging coordinates 

of , . 
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Figure 2: Search for the node such as vectors jp ipp0 and 

jpp0 compose a maximal angle. 

                    
Figure 3: Search for the new location of the node with regard 

to the node . 
0p

ip

                                
Figure 4: Search for the coordinates of . ip0

 

2.1 Quality control 
Using any optimization technique we must be sure that there will 
be no invalid or badly shaped elements in the resultant mesh. The 
simplest way is to check whether the quality of mesh elements 
improved after applying technique or not. It is common to use for 
that minimal angle like it is done in smart Laplacian smoothing 
[11]. However let us note that such procedure reduces the risk of 
obtaining inverted elements but still cannot guarantee validity of 
the new mesh. To solve this problem we propose to use signed 

aspect ratio 2
3

2
2

2
1

34
lll

Ak
++

⋅= , where are lengths of 

triangle sides and 

321 ,, lll

A is the signed area of triangle (i.e., with 
respect to counter-clockwise orientation). For oriented mesh all 
valid triangles have positive areas and all inverted triangles have 
negative areas. It is obvious that for any triangle 11 ≤≤− k . A 
value 1 corresponds to an equilateral triangle, while –1 indicates 
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an inverted equilateral triangle. When all three vertexes of the 
triangle are co-linear, the triangle is degenerate that yields a value 
of 0.  
After the new position of the node has been found we need to 
calculate minimal aspect ratio  for the triangles adjacent to 
this node and compare it with the minimal aspect ratio  with 
regard to the old position of the node.  If we move the 
node to the new position. Otherwise we keep the node at its initial 
position.  

newk

oldk

oldnew kk >

Let us note that computational cost of calculating signed aspect 
ratio is the same as computational cost of calculating the minimal 
angle. But unlike minimal angle signed aspect ratio guarantees 
validity of the resultant mesh. 
 

3. ALGORITHM FOR QUADRILATERAL MESHES 
As it has been described above for triangular meshes TD 
algorithm uses the neighboring nodes connected with the central 
node. To apply this algorithm to quadrilateral meshes we simply 
need to consider all surrounding nodes (Figure 5a).   

                 
                      (a)                                             (b) 
Figure 5:  (a) TD algorithm for quadrilateral meshes; (b) 
Quadrangle adjacent to the node ; are the areas of the 
triangles; are the lengths of quadrangle diagonals. 
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3.1 Quality control 
Just as in the case of triangular meshes we need some measure to 
guarantee validity of the resultant mesh. It seems good idea to 
decompose quadrangle in the pair of triangles and estimate the 
quality of these triangles. Frey in [19] proposed to use following 

quality measure:
ii A
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{ }21max ,,4,...,1,max ddilh i ==  and , , are the areas of 
triangles (Figure 5b).  In [20] it has been proved that this measure 
has all desired properties for a quadrangle quality measure: 
extremal and asymptotic. But let us remark that we need some 
addition checks to detect invalid, e.g. self-intersected, elements 
(see [19] for details). Therefore we propose slight modification of 
this measure that allows effectively discovering inverted 

elements. 
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where , 2 , are the signed areas of triangles. It can easily 
be checked that for any quadrangle, in the case 

of square, in the case of degenerate element, and 

+
iA ,1=i

11 ≤≤− k 1=k

0→k
01 <≤− k in the case of inverted element.   

Similarly to the case of triangle meshes after the new location of 
the node is found we calculate minimal aspect ratio for the 
quadrangles adjacent to this node and compare it with the 
minimal aspect ratio for the old node position. If we 
move the node to the new position. Otherwise we keep the node at 
its initial position.   

q

oldnew kk >

 

4. QUANTITATIVE MEASURES 
We use various quantitative measures to demonstrate that after 
applying TD algorithm mesh quality is improved and the 
deviation of the resultant mesh from the original surface is small. 

4.1 Signed aspect ratio  
To measure the geometric properties of the obtained mesh we use 
signed aspect ratios described in Sections 2.1 and 3.1. Let us 
remind that the closer the value of to 1, the closer element to 
equilateral one. 

k
0<k  corresponds inverted elements while 0=k  

indicates degenerate elements. The histograms of aspect ratio for 
original and resultant meshes are presented to demonstrate the 
improvement of mesh quality. 

4.2 Change of the volume 
Having a triangular or quadrilateral mesh it is easy to calculate 
the interior volume. This can be done by summing the volumes of 
all oriented pyramids centered at a point in space (the origin, for 
example) and with a triangle or quadrangle of the mesh as a base. 
We computed the volumes enclosed by the original and resultant 
surfaces and calculated the difference between them.  

4.3 Changes in surface normals 
For numerical simulation it is very important to minimize changes 
in the surface normals while improving mesh quality. We 
calculated differences between normals at the nodes of the 
resultant meshes and corresponding nodes of the original meshes 
to show that these changes are small.  

                           
Figure 6: Dihedral angle used for approximation of mean 
curvature. 
 

4.4 Changes in surface curvatures 
It is also important to keep changes in surface curvatures small. 
Roughly speaking, the degree of surface “bending” in space is 
defined by mean curvatures. Therefore we use notion of mean 
curvature to prove that there is no large deviation between 
original and resultant surfaces. It is easy to see that polyhedral 
surface “bends” along its edges. 
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Denote by )( ieβ the dihedral angle between two faces adjacent to 
the edge of the mesh (Figure 6). We calculate this angle in such 
a way that 

ie
0)( >ieβ  if is convex edge, ie 0)( <ieβ if is 

concave edge, and 
ie

0)( =ieβ if is plane edge. ie

The difference in dihedral angles of the original and resulting 
mesh is calculated to demonstrate that the change of the surface 
shape is small.  

 
5. RESULTS 
In order to show the effectiveness of the proposed TD algorithm 
let us consider two aspects of the problem of surface mesh 
improvement. Firstly let us demonstrate the visual effect of 
applying TD algorithm.  From the results shown in Figure 7, we 
can see that even after fifth iteration the model of Mannequin 
preserves all its characteristic features. The statistics of the mesh 
of Mannequin after first and fifth passes are presented in Tables 1 
and 2. We calculated maximum and average changes in dihedral 
angles ( meanλmax∆ , meanaverλ∆ (degree)), maximum and average 

changes in normals ( nαmax∆ , naverα∆ (degree)), and difference 

of the volume ( ). We can see that average changes in 
normals and dihedral angles are small. Let us note also that 
without any special constraints [21] TD algorithm gives very 
good results in the sense of volume preserving. 

(%)Vol∆

 Mannequin         (1st pass) Mannequin        (5th pass) 

meanλmax∆  081.56  093.82  

meanaverλ∆  0652.0  075.1  

       nαmax∆  0918.33  0077.63  

      naverα∆  0566.1  0418.3  

   (%)Vol∆ %017.0  %069.0  

Table 1: Statistics on the model of Mannequin. 

 Initial 1st pass 5th  pass 

2.00 << k  %09,7  %37.4  %4.2  

4.02.0 <≤ k  %26.36  %59.32  %05.25  

6.04.0 <≤ k  %13.52  %28.41  %36.27  

8.06.0 <≤ k  %13.3  %61.18  %17.24  

18.0 ≤≤ k  %21.1  %15.3  %02.21  

Table 2: Histograms of signed aspect ratio for mesh of 
Mannequin (percentage). 
Figure 8 demonstrates that TD algorithm does not destroy special 
features of the model such as anisotropy and local refinement. We 
can see that local refinement near wolf’s mouse and eyes is 
preserved even after fifth iteration. It is useful to remark that TD 
algorithm can handle inverted elements. Black patches mark the 
invalid triangles on the original model of Wolf. From Figure 8 it 
is easily seen that TD algorithm efficiently eliminates inverted 
elements. All statistics for the mesh of Wolf can be found in 
Tables 3 and 4.   

                
                                               (a) 

                
                                                            (b) 
Figure 7: (a) Mesh of Mannequin; (b) Mesh optimized with TD 
algorithm after fifth iteration. 
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                                           (a) 

       
                                           (b) 
Figure 8: (a) Mesh of Wolf; (b) Mesh optimized with TD 
algorithm after fifth iteration. 
 

 Wolf         (1st pass) Wolf        (5th pass) 

meanλmax∆  068.21  087.64  

meanaverλ∆  039.1  013.3  

       nαmax∆  0959.27  0833.54  

      naverα∆  0171.2  0712.4  

  (%)Vol∆  %027.0  %094.0  

Table 3: Statistics on the model of Wolf.    
 

 Initial 1st pass 5th pass 

0<k  %1.0  %04.0  %0  

2.00 << k  %79.4  %24.2  %7.0  

4.02.0 <≤ k  %87.29  %97.23  %4.15  

6.04.0 <≤ k  %32.49  %21.37  %92.18  

8.06.0 <≤ k  %51.13  %05.26  %67.31  

18.0 ≤≤ k  %41.2  %49.10  %31.33  

Table 4: Histograms of signed aspect ratio for mesh of Wolf. 
 
Now let us demonstrate more precisely how TD algorithm 
influences on the shape and size of the mesh elements. 
One important factor affecting the accuracy and efficiency of the 
finite element analysis is size quality. There are two cases that 
must be considered: uniform and graded meshes. For uniform 
meshes it is necessary to keep difference among sizes of the 
elements as small as possible. Graded meshes contain several 
layers that should not be diffused after applying some technique 
and size change at the transitional zone should be smooth. In 
Figure 9 we can see that even after several iterations there is no 
“diffusion” of layers, size change is very smooth and uniform 
zones remain uniform.    
As is well known Laplacian smoothing may degrade mesh quality 
if the algorithm iterates more than a few times. On the contrary, 
as it can be seen from Table 5 TD algorithm tends to improve the 
aspect ratio as more passes are performed.  
The rest of the statistics for quadrilateral mesh of Rocker Arm is 
presented in Tables 6.  
 

 Initial 1st pass 5th pass 

2.00 << k  %33.4  %54.2  %19.2  

4.02.0 <≤ k  %2.52  %4.44  %47.32  

6.04.0 <≤ k  %62.36  %21.38  %18.34  

8.06.0 <≤ k  %23.6  %07.12  %37.21  

18.0 ≤≤ k  %62.0  %78.2  %79.9  

Table 5: Histograms of signed aspect ratio for quadrilateral mesh 
of Rocker Arm. 
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(a) (b) 

Figure 9: (a) Quadrilateral mesh of Rocker Arm; (b) Mesh 
optimized with TD algorithm after fifth iteration. 
 

 Rocker Arm (1st pass) Rocker Arm (5th pass) 

meanλmax∆  074,18  012.64  

meanaverλ∆  0128.0  0296.0  

       nαmax∆  028.39  068.59  

      naverα∆  0718.0  0492.1  

   (%)Vol∆ %003.0  %0034.0  

Table 6: Statistics on the quadrilateral model of Rocker Arm. 
 

5.1 About applying TD to plane meshes 
Although TD algorithm is meant for working with surface meshes 
it also gives good results for plane meshes. Actually in many 
cases, the results are even superior to the mostly used techniques.     
As is well known Laplacian and smart Laplacian smoothing are 
the most commonly used techniques to improve the quality of 
plane meshes because of its low computational cost. But both 
methods may produce badly shaped or even inverted elements. In 
[8] there has been proposed effective method called angle-based 
approach with low computational cost. Quality of a mesh 
optimized with this method is much better than after Laplacian 
and smart Laplacian smoothing and chance to obtain inverted 
elements is reduced.  But in [22] it has been pointed out that this 
is true mostly for the meshes with regular connectivity. When 
mesh contains very distorted elements angle-based approach also 
may fail. To solve this problem Surazsky and Gostman in [22] 
proposed to use weights. This scheme reduces the risk of 
generating inverted elements but still cannot guarantee that the 
obtained mesh will be valid. In fact, both angle-based and 
weighted angle-based approaches may produce the meshes with 
even worse quality than Laplacian smoothing.  
Now let us give some interesting example of applying TD 
algorithm. As is well known, data can be obtained from different 
sources of information, in particular from existing contour maps; 
an example is given in Figure 10a. Despite a flurry of activity in 
the generation and visualization of terrain data from scattered data  

 
                                             (a) 

 
                                            (b) 

 
                                            (c)             
Figure 10: (a) Fragment of the initial mesh of Bandai Mountain; 
(b) Mesh optimized with TD algorithm after 1st iteration; (c) Mesh 
optimized with TD algorithm after 10th iteration. 
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points this matter remains a difficult and computationally 
expensive problem. Traditionally, visualization of elevation data 
consists of three major steps: tessellation, modeling and 
rendering. The most commonly used tessellation is Delaunay 
triangulation. Unfortunately, this method has some serious 
drawbacks resulting in a confusing image because clearly visible 
“traces” of triangulation can be observed as it can be seen in 
Figure 10a. To attenuate this effect, we process the mesh of 
Bandai Mountain, Japan, with all foregoing techniques and TD 
algorithm. The results are following: Laplacian smoothing 
produced 211 inverted triangles; smart Laplacian – 179; angle-
based approach – 3673; weighted angle-based approach – 1449; 
TD algorithm – no inverted triangles during all performed 
iterations. The fragments of the original mesh and mesh optimized 
with TD algorithm after first and tenth iterations are presented in 
Figure 10. 
Let us stress that because of introducing into the scheme signed 
aspect ratio TD algorithm ensures that the resultant mesh will be 
valid not only after first iteration but also after several iterations. 

5.2 Comparison of TD algorithm and previous 
approach to the problem of surface mesh 
improvement 
To compare our approach with the previous ones we chose simple 
method illustrated the main idea of the preceding works. At each 
node of the original mesh we define local tangent plane, project 
neighboring nodes to it and find new location of the concerned 
node using smart Laplacian smoothing. After that we project 
obtained node back to the discrete surface.  To be precise, let us 
call this approach “Back to the Discrete Surface” (BDS).  
We applied usual Laplacian smoothing, BDS and TD algorithms 
to the triangular mesh of the cubic surface . Since 
we have analytic surface curvatures and normals can be easily 
calculated at each point of the surface. Curvatures for resultant 
meshes can be computed numerically [23]. We calculated 
maximum and average changes in Gaussian and Mean curvatures 
(

33 64 yxz +=

Gaussλmax∆ , Gaussaverλ∆ , meanλmax∆ , meanaverλ∆ ), maximum and 
average changes in normals ( nαmax∆ , naverα∆ (degree)), 
maximum and average deviations from the original surface 
( , ). To measure the geometric quality of the resultant 
meshes we again used signed aspect ratio described in Section 
2.1.  

maxE averE

The data from the Table 7 verify that TD algorithm gives the best 
results in the sense of preserving surface characteristics.   
 

6. CONCLUSION  

In this paper, we introduced novel approach to improve surface 
mesh quality while maintaining the essential surface 
characteristics. In contrast to the existing methods we did not tend 
to keep new vertices on the original discrete surface. All 
operations are performed directly on the surface. It allows us 
taking an advantage in speed without sacrificing any quality in 
results. Moreover as it has been shown the results are even 
superior to the previous ones in the sense of preserving surface 
curvatures and normals.  
 
 

 Laplacian 
smoothing 

BDS TD 

Gaussλmax∆  8.48812 4.2132 3.00218 

Gaussaverλ∆  0.566505 0.504979 0.395472 

meanλmax∆  2.007724 1.434133 1.075598 

meanaverλ∆  0.144465 0.124508 0.095078 

nαmax∆  4.89858 4.73702 3.46709 

naverα∆  1.051849 0.809531 0.656461 

maxE  0.007234 0.00361 0.00181 

averE  0.001524 0.000491 0.000326 

  Table 7: Statistics for the mesh of cubic surface processed with 
Laplacian smoothing, BDS approach and TD algorithm. 
 

 Initial Laplacian 
smoothing 

BDS TD 

2.00 << k  %05,20  %43.4  %34.4  %83.4  

4.02.0 <≤ k  %79.24  %75.17  %83.18  %78.19  

6.04.0 <≤ k  %18.37  %24.19  %1.20  %73.20  

8.06.0 <≤ k  %72.6  %4.20  %87,22  %1.23  

18.0 ≤≤ k  %26.11  %18,38  %86.33  %56.32  

Table 8: Histograms of signed aspect ratio for mesh of cubic 
surface processed with Laplacian smoothing, BDS approach and 
TD algorithm.. 
 
The procedure has been successfully tested on a number of 
complex triangular and quadrilateral surface and plane meshes. 
Different quantitative measures proved that proposed technique 
do not cause considerable changes in surface characteristics while 
improving mesh quality. The algorithm can be applied iteratively 
that allows the user attaining resultant mesh more suitable for his 
application.  
TD algorithm can be considered as universal approach since it can 
be applied for any surface or plane triangular or quadrilateral 
meshes. 
An interesting and important problem is to define the number of 
iterations.  The geometric mesh quality is improved after each 
iteration. On the other hand after each iteration deviation from the 
original surface is increased. Therefore we need to find some 
compromise between geometric quality improvement and degree 
of deviation from the original surface. It seems an interesting idea 
to construct some error-metrics (for instance, normal-based and 
curvature-based) for measuring the deviation between original 
and resultant meshes. We can define some threshold values for 
these metric and stop iterations when these values are reached. 
We leave careful study of this problem to future work.  
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